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1

 

Bacteria of the genus 

 

Beijerinckia

 

 are nonsymbi-
otic aerobic chemoheterotrophs and diazotrophs that
are able to utilize a broad range of polycarbon sub-
strates, preferably sugars [1]. Due to their acidotoler-
ance (ability to survive at pH 3.0–4.0), these bacteria
are widespread in acidic soils, although they also
occur in neutral soils. There are four 

 

Beijerinckia

 

 spe-
cies with a suitable taxonomic description: 

 

B. mobilis,
B. indica, B. derxii

 

, and 

 

B. fluminensis.

 

 However, their
physiology and metabolism are as yet poorly under-
stood [2–4]. Our recent investigations have shown that

 

B. mobilis

 

 can grow autotrophically on methanol and
formate [5]. This prompted us to study the enzymes
involved in the metabolism of methanol and glucose
in this facultative methylotroph.

Enzyme activity was measured, as described in
[6, 7], in extracts of 

 

B. mobilis

 

 cells grown on meth-
anol and glucose. As is evident from the table,

 

B. mobilis

 

 possesses all the enzymes necessary for
oxidation of methanol to CO

 

2

 

 via formaldehyde and
formate, i.e., for methylotrophic growth. The pres-
ence of highly active phosphoribulokinase and ribu-
lose 1,5-bisphosphate carboxylase/oxygenase sug-
gests that the methanol carbon is mainly assimilated
at the level of CO

 

2

 

 via the ribulose bisphosphate
(RuBP) pathway. Transketolase and transaldolase
are involved in reactions that convert glyceralde-
hyde-3-phosphate into xylulose-5-phosphate, which
results in the regeneration of ribulose-1,5-bisphos-
phate, the primary acceptor of CO

 

2

 

 (see figure). The
reaction catalyzed by ribulose 1,5-bisphosphate car-
boxylase/oxygenase produces, in addition to 3-phos-
phoglycerate, phosphoglycolate, which is then
dephosphorylated to glycolate. The last compound
transforms into glyoxylate, glycine, and serine via a
shunted variant of the serine pathway. Since the activ-
ity of NADH-dependent hydroxypyruvate reductase,
serine–glyoxylate aminotransferase, and glycerate kinase
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is low, the serine pathway plays a minor role in
assimilation of the methanol carbon at the level of
formaldehyde. 

 

B. mobilis

 

 does not have 3-hexulose-
6-phosphate synthase, suggesting that the ribulose
monophosphate pathway is not involved in the pri-
mary assimilation of formaldehyde.

In contrast to fructose-1,6-bisphosphate aldolase
and fructose-1,6-bisphosphatase, which are involved in
gluconeogenesis, some enzymes involved in carbon
metabolism (ATP-dependent 6-phosphofructokinase,
glucose-6-phosphate dehydrogenase, and 6-phospho-
gluconate dehydrogenase) were suppressed in the
methanol-grown culture. Growth on glucose was found
to activate ATP-dependent glucokinase, 6-phospho-
fructokinase, fructose-1,6-bisphosphate aldolase, and
6-phosphogluconate dehydrogenase (NADP

 

+

 

-depen-
dent). This circumstance suggests that 

 

B. mobilis

 

 cata-
bolizes glucose with the involvement of both the glyc-
olytic and the pentose phosphate oxidative pathways.
At the same time, the absence of 2-keto-3-deoxy-6-
phosphogluconate aldolase activity indicates that hex-
ose phosphates are not metabolized via the Entner–
Doudoroff pathway.

The 

 

B. mobilis

 

 cells grown on methanol exhibited
low activity with of pyruvate dehydrogenase and tri-
carboxylic acid cycle enzymes (such as citrate syn-
thase, isocitrate dehydrogenase, 

 

α

 

-ketoglutarate
dehydrogenase, and malate dehydrogenase), indicat-
ing that the Krebs cycle mainly performs a biosyn-
thetic function during methylotrophic growth of

 

B. mobilis

 

. The low activity of isocitrate lyase and
malate synthase in the cells grown on methanol as
compared to those grown on glucose suggests that the
glyoxylate bypass plays a minor role in methy-
lotrophic growth of 

 

B. mobilis

 

.

Ammonium is assimilated by 

 

B. mobilis

 

 with the
involvement of NADPH-dependent glutamate dehy-
drogenase, alanine dehydrogenase, and the glutamate
cycle. The presence of highly active phosphogluco-
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Activity of the enzymes involved in the metabolism of methanol and glucose in 

 

B. mobilis

 

Enzyme Cofactor
Activity with

methanol glucose

Methanol dehydrogenase PMS 27 0
Formaldehyde dehydrogenase PMS 17 0

NAD

 

+

 

, GSH 210 0
NADP

 

+

 

, GSH 108 0
Formate dehydrogenase PMS 32 0

NAD

 

+

 

0 0
Phosphoribulokinase ATP 103 3
Ribulose 1,5-bisphosphate carboxylase 160 30
Phosphoenolpyruvate carboxylase 103 47
3-Hexulose-6-phosphate synthase 0 0
Hydroxypyruvate reductase NADH 18 10

NADPH 0 0
L-Serine–glyoxylate aminotransferase 63 40
Phosphoglycolate phosphatase 25 12
Malyl-CoA synthase/Malyl-CoA lyase ATP, CoA 49 56
Glycerate kinase ATP 64 40
Transaldolase 86 94
Glucose-6-phosphate dehydrogenase HAD

 

+

 

10 322
HADP

 

+

 

24 349
6-Phosphogluconate dehydrogenase NAD

 

+

 

0 0
NADP

 

+

 

16 345
Fructose-1,6-bisphosphate aldolase NADH 133 215
Fructose-1,6-bisphosphatase 31 64
6-Phosphofructokinase PP

 

i

 

0 0
ATP 54 41

2-Keto-3-deoxy-6-phosphogluconate aldolase 0 0
Pyruvate dehydrogenase NAD

 

+

 

143 212
Pyruvate kinase 100 96
Citrate synthase 22 130
Isocitrate dehydrogenase NAD

 

+

 

0 0
NADP

 

+

 

68 67
2-Oxoglutarate dehydrogenase NAD

 

+

 

286 295
Malate dehydrogenase NADH 250 700

NADPH 357 296
Isocitrate lyase 35 225
Malate synthase 20 188
Glutamate dehydrogenase NADPH 0 0

NADH 49 201
Alanine dehydrogenase NADPH 206 188
Glutamate synthase NADH 78 362

NADPH 0 0
Glutamine synthetase ATP, Mg

 

2+

 

48 44
Glucokinase ATP 97 104
Phosphoglucomutase 101 131
UDP-glucopyrophosphorylase 140 81
Glycogen synthase 72 199
Acetoacetyl-CoA reductase NADPH 73 120
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mutase, UDP-glucopyrophosphorylase, glycogen
synthase, and NADPH-dependent acetoacetyl-CoA
reductase confirms their involvement in the synthesis
of reserve biopolymers, such as glycogen and polyhy-
droxybutyrate.

The comprehensive metabolic characteristics of

 

B. mobilis

 

 schematically presented in the figure are
important for understanding ecophysiology and the role
of this facultative methylotroph in natural microbial
communities [1, 5].

 

Pathways of methanol metabolism in 

 

Beijerinckia mobilis
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